Ультразвук

Ультразвук

Меню сайта

Разное
Бытовые приборы

Видео !

Вы можете получить WMR-бонус в размере 0,01-0,10 WMR на свой кошелек 1 раз в сутки

Кошелек
Код Защитный код

Обмен Webmoney

Получить ультразвуковые волны довольно просто. Нужно лишь заставить вибрировать частички вещества с соответствующей частотой. Вибрацию можно осуществить следующими методами, которые и легли в основу создания ультразвуковых генераторов:

1. Механический ( акустические колебания возникают при механическом ударе по твердому телу или при его трении )

2. Пьезоэлектрический ( акустические колебания возникают при воздействии на пьезоэлектрик переменного электрического поля )

3. Магнитострикционный ( акустические колебания возникают при воздействии на ферромагнетик переменного магнитного поля )

4. Электростатический ( акустические колебания возникают при воздействии на диэлектрик переменного электрического поля )

5. Электродинамический ( акустические колебания возникают при воздействии на электропроводную среду переменного магнитного поля )

 

  МЕХАНИЧЕСКИЕ  ИЗЛУЧАТЕЛИ   УЛЬТРАЗВУКА

 

Исторически самыми первыми были механические излучатели ультразвука. Простая стальная струна от рояля может стать источником ультразвука. Как известно, натянутая стальная струна длиной 50 см. при ударе молоточком возбуждает в воздухе звуковые волны частотой 5 кГц. Поскольку генерируемая частота обратно пропорциональна длине струны, укорачивая длину струны, можно увеличить частоту звука. Например, струна длиной 10 см. может дать ультразвук частотой 25 кГц.

 

 

 

 

 

 

 

При ударе молоточком по натянутой струне в окружающем пространстве возникают акустические волны

 

 

Используемые музыкантами камертоны также способны генерировать  ультразвук, если уменьшить все размеры этого устройства ( предельная частота достигаемого ультразвука ~100 кГц ).

 

 

  

 

 

 

 

 

 

 

 

Музыкальный камертон

 

 

Однако такие простые источники ультразвука не могут дать большую акустическую интенсивность.

Более мощный ультразвук можно получить в стальном или стеклянном стержне, возбуждая в нем продольные акустические колебания посредством трения. Стержень закрепляется посередине, и один из его концов непрерывно натирается каким-либо мягким материалом типа шелковой ткани. При этом на другом конце стержня возникают акустические колебания. Среди множества генерируемых колебаний наибольшую интенсивность будут иметь те колебания, частота которых совпадает с собственной частотой упругих колебаний стержня. Независимо от материала стержня, чем меньше его длина, тем выше частота акустических колебаний.

 

 

   1- Стальной стержень

   2- Точка крепления стержня

   3- Стальные валики, покрытые шелковой тканью

 

 

Мощным источником  ультразвука ( единицы и сотни ватт ) является свисток Гальтона, работающий на частотах до 50 кГц. Принцип работы акустического свистка основан на возникновении акустических колебаний в турбулентном газовом потоке. Если в таком газовом потоке установить акустический резонатор, в нем будут усиливаться  колебания, определяемые геометрией резонатора и параметрами газовой струи. Один из вариантов конструкции свистка Гальтона показан на рисунке ниже.

Газовый поток через трубку 1 подводится к кольцеобразной щели 2, через которую он попадает на острое цилиндрическое лезвие 3. При этом вокруг лезвия возникают периодические завихрения ( турбулентность ), возбуждающие в полом объеме 4 ( резонатор) акустические колебания. Резонатор настраивается подвижным поршнем 5, который приводится в движение микрометрическим винтом 6. Второй микрометрический винт 7 регулирует величину зазора между щелью 2 и лезвием 3, определяя частоту излучаемого ультразвука ( чем выше скорость газового потока и меньше ширина щели, тем выше частота акустических колебаний ). Независимая настройка резонатора и величины воздушного зазора на нужную частоту-занятие крайне утомительное. Однако при стабильном газовом потоке и четкой регулировке свисток Гальтона выдает ультразвук эталонного качества.

Разновидностью свистка Гальтона является жидкостный свисток. Принцип его работы такой же, как и газового свистка, с той разницей, что вместо газовой струи используется поток жидкости. Однако частота и мощность ультразвука в жидкостном свистке ( предельная частота ультразвука ~ 40 кГц ) ниже, чем в газовом. Это объясняется уменьшением резонансных свойств полого объема, помещенного в жидкость ( коэффициент отражения акустической волны на границе жидкость/твердое тело намного меньше, чем на границе газ/твердое тело ). Повысить мощность ультразвука, генерируемого жидкостным свистком, можно применением в качестве резонатора твердотельной пластинки. Если на пути струи жидкости поместить клиновидную пластину, в ней возникнут акустические колебания, частота которых определяется скоростью струи жидкости и расстоянием между соплом и клином пластины. Чем выше скорость потока жидкости и меньше расстояние между соплом и пластиной, тем выше частота акустических колебаний. При совпадении частоты акустических колебаний с собственной частотой колебаний пластинки возникает акустический резонанс, и амплитуда колебаний пластинки резко возрастает. Для ослабления влияния элементов держателя пластинки на амплитуду колебаний пластинка крепится в точках, в которых имеются узлы колебаний. Собственная частота колебаний клиновидной пластины определяется параметрами материала, из которого она изготовлена, но при прочих равных условиях, чем толще и короче пластина, тем выше собственная частота колебаний.  На рисунке ниже стрелкой показано направление потока жидкости через сопло.

 

Другим механическим источником ультразвука является газоструйный акустический излучатель Гартмана.

Предельная частота ультразвука при использовании воздушной струи достигает 120 кГц. Принцип работы этого устройства основан на возникновении акустических колебаний в газовой струе, имеющей сверхзвуковую скорость истечения.

 

Если перед соплом 1 поместить резонатор 2, в нем будут усиливаться акустические колебания, частота которых определяется глубиной и диаметром полости резонатора.

К механическому источнику ультразвука относится и сирена. Сирена в простейшем случае представляет собой два диска, имеющих несколько отверстий, через которые продувается воздух ( бывают и жидкостные сирены, в которых вместо воздуха используется поток жидкости ). Один диск является неподвижным ( статор ), а другой ( ротор ) вращается параллельно статорному диску. Если оба диска имеют одинаковые отверстия, то за счет периодического прерывания потока воздуха возникают акустические колебания определенной частоты, зависящей от числа отверстий в дисках и частоты вращения ротора. Чем больше отверстий в дисках и выше число оборотов ротора, тем выше частота излучаемого ультразвука.

 

 

 

Предельная частота ультразвука сирены достигает 50 кГц, хотя в оригинальных конструкциях частота ультразвука составляет несколько сотен килогерц. Сирена способна выдавать акустическую мощность в несколько киловатт. Ультразвуковое поле сирены может быть настолько большим, что помещенный в него клочок ваты практически мгновенно вспыхивает и сгорает.

Практическое использование описанных выше механических излучателей ультразвука сильно ограничивается тем обстоятельством, что ультразвук генерируется в газовой струе, тогда как часто требуется введение ультразвука в жидкость или твердое тело.

 

 

ЭЛЕКТРОСТАТИЧЕСКИЙ   ИЗЛУЧАТЕЛЬ  УЛЬТРАЗВУКА

 

Принцип работы электростатического акустического генератора основан на взаимодействии электрически заряженных частиц. Как известно, однополярные заряды отталкиваются друг от друга, а разнополярные притягиваются. Если зарядить две параллельные металлические пластины разными зарядами, то пластины будут взаимно притягиваться. Если же подать на пластины переменное напряжение, пластины начнут совершать механические колебания, частота которых будет определяться частотой переменного напряжения. Как правило, в электростатическом излучателе одна пластина неподвижна, а другая представляет собой тонкую ( десятки микрон ) металлизированную пленку, которая и совершает колебания, возбуждая продольную акустическую волну.

 

 

Электростатический излучатель способен генерировать ультразвук довольно большой частоты, исчисляемой десятками мегагерц, однако интенсивность получаемого ультразвука относительно мала.

 

           

 ЭЛЕКТРОДИНАМИЧЕСКИЙ   ИЗЛУЧАТЕЛЬ    УЛЬТРАЗВУКА

 

На любой проводник с током, находящийся в магнитном поле, действует сила Лоренца. Это явление используется в электродинамическом акустическом генераторе. На рисунке показан простой электродинамик, способный излучать ультразвук.

 

 

Если в проводе катушки протекает переменный ток, его магнитное поле наводит вихревые токи в электропроводящем стержне, заставляя его совершать механические колебания. Стержень соединен с мембраной, которая и создает в окружающей среде продольную акустическую волну, частота которой зависит от частоты переменного тока в катушке. Электродинамики применяют для генерации низкочастотного ультразвука, частота которого не превышает 100 кГц. Электродинамический принцип получения ультразвука используют, главным образом, в микроэлектронике при создании так называемых электромагнитных акустических преобразователей. Работа таких преобразователей основана на возникновении акустических колебаний  в твердом теле, на которое действует внешнее магнитное поле. При прохождении через твердое тело электрического тока на него действует сила Лоренца со стороны внешнего магнитного поля, и при переменном токе в твердом теле возникают акустические колебания, частота которых зависит от частоты переменного тока. В миниатюрных преобразователях в качестве твердого тела применяют металлизированный диэлектрик (стекло или керамика ).

 

 

 

 

МАГНИТОСТРИКЦИОННЫЙ  ИЗЛУЧАТЕЛЬ  УЛЬТРАЗВУКА

 

Эффект магнитострикции уже давно используется для генерации ультразвуковых колебаний. В чем суть ? Если поместить ферромагнитный стержень в переменное магнитное поле, геометрические размеры стержня будут изменяться, т.е. в окружающей стержень среде возникнут акустические волны.

 

При совпадении частоты переменного магнитного поля с собственной частотой упругих колебаний стержня возникнет акустический резонанс, и амплитуда колебаний стержня будет максимальной.

 Амплитуда колебаний стержня-вибратора зависит не только от физических свойств конкретного ферромагнетика, но и от упругости твердого тела, из которого изготовлен стержень. Вобщем-то, амплитуда акустических колебаний незначительна и исчисляется микронами, но и этого достаточно для создания высокоэффективных ультразвуковых технологических установок.

В качестве материала для магнитострикционного преобразователя (вибратора) среди металлов-ферромагнетиков никель обладает самыми лучшими магнитострикционными свойствами, однако были найдены и другие материалы на основе интерметаллических соединений:

Альфер        -сплав Fe и  Al (13% )

Пермаллой  -сплав Fe и Ni (40%)

Альсифер    -сплав Fe и Al (4%), Si (2%)

Пермендюр -сплав Fe и Co (49%), V (2%)

Инвар           -сплав Fe (64%) и  Ni (36%)

Цекас           -сплав Fe (26,9%),  Ni (59,9%), Cr (11,2%), Mn (2%)

 

Альтернативой перечисленным выше материалам является ферритовая керамика, химический состав которой определяется общей формулой MO-Fe2O3, где М может быть таким металлом как Ni, Co, Fe, Mn, Mg, Cu. Преимущество ферритового вибратора в том, что у него потери на вихревые токи значительно ниже, чем у металлического вибратора, что позволяет использовать монолитные вибраторы на высоких частотах ультразвука. Если металлический вибратор при продолжительной работе требует водяного охлаждения, то ферритовый вибратор способен генерировать ультразвук при температуре до 500 °. Однако феррит не выдерживает мощных ультразвуковых вибраций и его применение ограничено.

На рисунке ниже показана конструкция самодельного магнитострикционного вибратора на основе ферритового стержня.

 

 

 Вибратор металлического магнитострикционного излучателя представляет собой стянутый в единый пакет набор из пластин ( толщина пластины не более 0,3 мм ). Для возбуждения ультразвуковых колебаний вокруг пластин вибратора наматывается несколько витков провода, через который пропускается переменный ток ультразвуковой частоты.

 

Магнитострикционный преобразователь, набранный из отдельных пластин ( справа на рисунке форма отдельной пластины).

Для получения максимальной амплитуды акустических колебаний длина пластины соответствует резонансной частоте. Если требуется облучать ультразвуком большие поверхности, используют более сложные профили пластин. На рисунке ниже показан магнитострикционный преобразователь для ванн ультразвуковой очистки.

 

 

В некоторых ультразвуковых приборах требуется направленное ультразвуковое излучение. В этом случае применяют преобразователь, набранный из пластин круглого профиля.

 

 

 

 

Магнитострикционный преобразователь, в котором используются  ультразвуковые колебания внешнего кольца пакета пластин.

 

 

Магнитострикционный преобразователь, в котором используются  ультразвуковые колебания внутреннего кольца пакета пластин.

 

Как правило, в магнитострикционном излучателе используется подмагничивание  вибратора, что позволяет добиться большей амплитуды колебаний вибратора. При этом частота колебаний вибратора совпадает с частотой переменного магнитного поля ( без подмагничивания частота вибратора вдвое больше частоты магнитного поля, но амплитуда вибраций будет незначительной ). В ферритовых излучателях для подмагничивания обычно применяют постоянные магниты, а в металлических излучателях используют подмагничивание постоянным током, проходящим через обмотку возбуждения вибратора или дополнительную обмотку подмагничивания. Принципиального значения источник подмагничивания не имеет. В любом случае, для конкретного вибратора существует оптимальная величина магнитного поля, при которой достигается максимальная амплитуда ультразвуковых колебаний.

На рисунке ниже показана схема подключения магнитострикционного преобразователя (вибратора) с подмагничиванием электрическим током.

 

В этой схеме разделительный конденсатор С препятствует закорачиванию блока питания через выходные цепи ультразвукового генератора, а дроссель препятствует проникновению высокочастотных колебаний в блок питания.

 

Применение в магнитострикционных преобразователях вибратора, набранного из отдельных металлических пластин, обусловлено необходимостью уменьшения нагрева металла в электромагнитном поле катушки возбуждения. При использовании монолитного вибратора возрастают потери энергии на вихревые токи, что приводит к нагреву ферромагнетика вибратора особенно на высоких частотах ультразвука. Как известно, при нагревании ферромагнетик теряет свои магнитострикционные свойства и при определенной температуре ( точка Кюри) превращается в парамагнетик, что приводит к полному прекращению ультразвуковых колебаний вибратора.

Предельная частота  ультразвуковых колебаний магнитострикционного излучателя определяется его геометрическими размерами ( чем меньше длина вибратора, тем выше частота ультразвука ) и не превышает 200 кГц. Однако при некоторой потери мощности можно получить ультразвук гораздо большей частоты, возбуждая вибратор на частотах, кратных гармоникам собственной частоты упругих колебаний вибратора. Так, например, применяя в качестве вибратора тонкую ферритовую пластинку, можно получить ультразвук частотой порядка 10 МГц.

 

 

 ПЬЕЗОЭЛЕКТРИЧЕСКИЕ   ИЗЛУЧАТЕЛИ  УЛЬТРАЗВУКА

 

Принцип работы пьезоэлектрического излучателя ультразвука основан на использовании обратного пьезоэффекта, т.е. возникновении механических деформаций в некоторых кристаллах при воздействии  на определенные грани кристалла  внешнего электрического поля. Пьезоэлектрический эффект позволяет генерировать самый широкий спектр ультразвуковых частот. Только пьезоэлектрические излучатели способны создавать высокочастотные акустические колебания с частотой порядка 100 МГц.

Главным элементом пьезоизлучателя является твердотельная пластина ( иногда полимерная пленка ), изготовленная из пьезоэлектрического материала ( кварц, турмалин, кристалл сегнетовой соли, титанат бария, цирконат-титанат свинца ). Пластина помещается между двумя электродами, на которые подается переменное электрическое напряжение ультразвуковой частоты. Если пластина изготовлена из кристаллического пьезоэлектрика, то направление ультразвукового излучения будет зависеть от того, как ориентированно внешнее электрическое поле относительно кристаллографических осей пластины. Возможны как продольные, так и поперечные колебания пластины.

 

В результате пьезоэффекта в окружающей пластину среде возбуждаются акустические колебания, частота которых определяется частотой источника переменного напряжения. Амплитуда таких колебаний пропорциональна величине приложенного к электродам напряжения и ограничена диэлектрической прочностью материала пластины. Кроме того, акустические колебания  будут максимальными, если частота переменного напряжения совпадает с собственной частотой упругих колебаний пластины.

В настоящее время все технологические, медицинские и бытовые ультразвуковые установки с пьезокерамическим преобразователем используют не дорогие пьезокристаллы, а дешевую пьезокерамику на основе титаната бария или цирконат-титаната свинца. В зависимости от направления поляризации пьезокерамического вибратора в нем могут возникать как продольные, так и поперечные колебания. В таблице ниже показаны самые распространенные виды пьезокерамических излучателей.

 

 

 

пьезокерамика

Пьезокерамические вибраторы могут иметь различную форму и размеры

 

На рисунке ниже представлена одна из возможных конструкций пьезокерамического преобразователя.

 

Пьезокерамический преобразователь

 

Акустические свойства и площадь поперечного сечения металлических частей преобразователя должны соответствовать таковым для пьезокерамики. Обе металлические части могут быть изготовлены из одинакового или комбинированного материала. Обычно используют сталь, алюминий, титан, магний, бронзу, латунь и медь. Часто только одна из металлических частей используется для выхода максимальной мощности, и преобразователь изготавливается как полуволновой вибратор с резонансной частотой от 20 кГц до 40 кГц. Для увеличения предела прочности пьезокерамического элемента, а также улучшения акустического контакта металлические части преобразователя стягиваются болтом, создавая предварительное механическое напряжение на пьезокерамике.

 

 

 

      

Copyright MyCorp © 2019
Бесплатный хостинг uCoz